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ABSTRACT

Expressions for the exact power of tﬁc%:f:.vo-mple»nann-%itney
Wilcoxon U test procedure against alternstivoa of expcnential and
rectangplar populations have been derived. SQveral examples for total
sample sizes of 11 and 15 have been compared with Mood's median test.
Mood's test is more powerful than the U test in all instances in
which the number of observations from the null population exceeds the
number from the alternative population. The converse is true when
the number of observations from the nmull population is less than the
number from the alternative.

Expressions for the asymptotic efficiency of the Mann-Whitney-
Wilcoxon U test relative to Mood's and Maésey's tests and the like-
lihood ratio test have been derived for exponential populations. The
as&mptotic efficiency of the U test relative to the likelihood
ratio test is zero.

Mood's and Massey's test procedures for twe samples have been
extended to the case of discriminating among c¢ populations on the
basis of ¢ ordered samples. Expressions for the exact power have
been derived for Mood's test with exponential and rectangular popu-
lations and for Massey's test with exponentinl populatiqné. With
exponential translation alternatives,the teéps ars blacsed.

The exact null distributions of goodé;ss of fit tests for one-
way and two-way contingency tables indicateitbat even for samples as

small as ten, the exact distribution is cloée}y approximated by a

qhiéédﬁé;é-éiétribution with the appropriate degrees of freedom.
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SUMMARY

Many rank tests are available ﬁo discriminate between  two
populations on the basis of two ordered samples from the populations.
Of them, Mood's test procedure [16] based on the pedian of‘the com-
bined samples, Massey's extension of Mood's test [15] based on‘r frac-
tiles, and the Mann-Whitney-Wilcoxon U test procedure [14] based
on the number of times an observation from the second sampla exceeds
an observation from the first sample, have much to commend them: as
quick tests,

The exact powers of Mood's and Massey's tests against alter-
natives of translation in normal and exponential populations ard
change in location and scale in a rectangular population have al-
ready been investigated by Barton [2] and Chakravarti, Leone, and
Alanen [13]. Also, the exact power of the U test against the al-
ternative of translation in the normal population has been computed
by Dixon [6].

In Chapter I, expressions for the exact power of the two-
sample Mann-Whitney-Wilcoxon U test procedure aéainst altermatives
of exponential and re:tangular populations have been cbtained.
Several examples of the power for total sample sizes of 1l and 15
have been compared with similar resuits obtained from Mood's median
test procedure. The results of the comparison indicate that fo:x

these two alternatives:

iv



1) If the number of observations from the null population
is less than the number from the alternative, the
Mann-Whitney-Wilcoxon U test is more powerful than
Mood's median test,

1i) If the number of observations from the mull population
is greater than the number frcm the alternative, then
Moocd's test is more powerful than the Mann-Whitney-
Wilcoxon test.

111) 1If the number of observations from both populations
are the same, then both test procadures give approx-
imately the same power.

In Chapter 11, expressions for the asymptotic efficiency of
the Mann-Whitney-Wilcoxon U test relative to Mood's and Massey's
tests and the likelihood ratio test have been derived for exponen-
tial populations. The asymptotic efficiency of the Mann-Whitney-
Wilcoxon test relative to the likelihood ratio test is zero, but in
the case of Mood's and Macaey's tests the resulting expressions are
non-zero,

Chapter III is devoted to extending Mood's two-sample test
procedurs to the case of distinguishing among c(c > 2) populations
on the basis of ¢ ordered samples from the populationg. The
appropriate expressions for the power functions for exponential and

rectangular alternatives have been derived, and typical results for



<~/

the case of three samples from exponential populations indicate that
the te.t can be biased, especially when the level of significance is
small,

Similarly, in Chapter IV, Massey's two-sampie test procedurs
is extended to the case of distinguishing among c(c¢ > 2) popula-
tions on the basis of c ordered samples from the populations. Ex-
pressions for the exact power have beer. derived for the exponential
translation alternatives, and again, typical results for the case of
three samples indicate that the test can be biased, especially, when
the level of significance is small.

In Chapter V, the exact null distribution of goodness of fit
tests for one-way and two-way classifications is considered.
Typical results are computed and are compared with the usual chi-
square approximation. In general, the chi-square distribution vifh
the appropriate degrees of freedom closely approximates the exact
distribution, sven for total sample sizes as small as ten. In
addition, the exact power of the test statistic arising from a
one-way classification has been computed for several alternatives,
and the results have basen compared with both non-csntral and
central chi-square approximations. The results of the comparison
indicate tlat both approximations tend to overestimate the power
for small sample sizes, however, both approximations differ at

most by one percent.
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CHAPTER I

EXACT POWER OF SOME TESTS BASED ON THE MANN-WHITNEY U STATIST1C

1.1 Introduction.

Many rank tests are available to discriminate between two
populations on the basis of two ordered samples from the populations.
Of them, Mood's test [16], tased on the median of the combined
samples, Massey's extension of Mood's test [15], based on fractiles,
and Mann-Whitney's U test [14), based on the number of times an
observation from the second sample exceeds an observation from the
first sample, have much to commend them as quick tests.

The exact powers of Mood's and Massey's tests against alter-
natives of translation in the normal and exponential distributions
and change in location and scale in the rectangular distribution
have already been computed by Barton [2 ] and Chakravarti, Leone
and Alanen [13]. Also the exact power of the Mann-Whitney U test
against the alternative of translation in the normal distribution
has been computed by Dixon [ 6].

The purposes of the investigation in this chapter are:

(1) To derive the exact power functions for the Mann-Whitney U test

of two samples against alternatives of exponential and rec-
tangular populations.

(11) To tabulate and compare these results with those obtaired for
Mood's median test in order to evaluate if there is any result-
ant gain in the use of the Mann-Whitney U test., The latter is
mors elaborate than the former.




1l.2.1 The Two Sample Problem - Mann-Whitney U Test,

Let xl, Xz, eeey an and Yl’ Iz, ceny Ynz be independent-
ly distributed with continuous cumulative distribution functions
(cdfs) F and G respectively. We want to test the hypothesis

Hy F(x) =G(x) ,
against the alternative Hl given by

Hy ¢ F(x) > G(x) .
Let n = ny + n, denote the size of the combined sample and Z(l) <
Z(z) § coe § Z(n) be the combined ordered X's and Y's. This
ordering is unique with probability 1, since Pr{XJ = va} =
Pr{Yi = Yi'} = Pr{}(.1 = Yi] = 0 due to the assumption of continuity
of F and G.

The test originally proposed by Wilcoxon [22] is based on

the statistic T which is the sum of the ranks of the Y's in the
combined crdered sample. A test of size o« based on Wilcoxon's

statistic is:

reject Ho irT> Ex and

accept H if T <t , where Pr{T > by | Ho} <o

This test was modified by Mann and Whitney [14] by defining
a statistic U which is equal to the number of times a Y precedes
an X in the combined ordered sample. Then,a test of size o
based on the Mann-Whitney U statistic is

reject Ho if U< u, and
accept Hy 1f U > u, , where Pr{U < uy | Ho] <,




This U statistic is related to Wilcoxon's T statistic by

U=mn n, +4 nz(n2 +1) -T, (1.1)
which gives a simple way of computing U from the cbserved value of
T. The exact distribution of U under the null hypothesis Ho has

been tabulated by Mann and Whitney [14].

1.2.2 The Null Distribution.

Mann and Whitney have shown that the null distribution can

be calculated recursively from

n
1 )
= —— P - + =———feem P {
Pnl,nz(u) n, +n, nl--l,nz(u “z) n, + n, nl,nz-l u)
with
PO,nz(u) =0
ifa>0,
P ,0(“) =0
1
(1.2)
P =
0’nz(u) 1
( ifu=0,
=1
Pnl,O w)
and
P =
nl’mz(u) 0 ifu<o,

where Pn . () = Pr{U =u | Ho} for samples of size ny and ny .
However, it would be desirable to be able to express the null distri-
bution in closed form and to simultaneously derive a joint density
function which could be used to calculate the exact power under

fixed alternatives,
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Let us first consider that the set {yi [ 1=1, 2, ..., nz}
has been chosen from G noting that there are n, factorial ways
of obtaining the set. Next we order the set and then compute the
probability of choosing a set {xj | 3=1,2, ..., nl} from F
such that a specific value for U is obtained. (That is, we want
an expression for the joint distribution of U and the Y's.) For
simplicity, we will first consider the special cases of n, = 1, 2, 3
and then generalize the results to the case of arbitrary . For
convenience, we define ths following set of symbols to simplify the

notation.

Let {iz} be an arbitrary set of integer variables. Define

k-1
(a) § “u- 2 (L+l)i£ for x> 1, with §=u,

£=1

k-1
(b) A T8t Lz_:__ i, for k> 1, with A, =g,

k-1

{(a) G By = A =n -ut zil y) ij, for k > 1, = ny-Ays
(@) By = - min (0, qk/k), where a fraction such as a/b

denotes the largest integer contained in the quotient

of a divided by b,

( n, k 1-1 [ k -1
e) =n, ¢l it n, - 2 i)!
e 1y eeey 4 N I 172

1 for 1=4,

(f) 6,, =
¥ Yo for 175, (1.3)

For simplicity throughout, F(yi) and G(yi) will be written as

Fi and Gi respectively.,
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Let n, = 1, then we have one value of y say P and we

want to choose u values of x greater than ¥y and n,-u

values less than ¥ye Since F 1is the cumulative distribution

function of x, we get:

n -u u &
h(u, y) = 1L (u") Flnl (1-Fy) a;—i, O¢ugn . (1.4)

Using the special notation, this expression becomes

n L g, &
- 1. %1 1 &
\ .
where & is the Kronecker delta defined by (1.3f) .

B,s0

If n, = 2, we want to choose ny valuee of x from F such
that the to%tal number of x's greater than 7 and 7, is equal
to u. This can be accomplished in several ways, noting that each

value of x greater than Y5 is counted twice in generating the

value of u. The resulting joint distribution of u, yl,and ¥, is
n n, -u+i u=-21
- 1 1 1 1,
h(, 7y, 35) = 2 y (u-zil, 11> 1 (Fy-Fy) i
1

i. & G
yt Lt 2 (1.6)

1-F —
( 2 dy, dy2 ’

where 11 denotes the number of x's that are greater than Yoo
The sum over 11 includes all permissible values of 11 such that

none of the exponents in the expression become negative. Thus,these

restrictions on the allowable values of il can be restated in the




followvlag form:
(1) u-24,>01, < w2 = §1/2,and

(11) ny -u+4, > 0=31; > - min(0, ny-u) =B, or B, =0 .
These results may be combined together to yield
By $1 < 8/2.
Recalling that 82 = 0 whenever il > 91’ (1.6) can be written in

the following form:

/2 G, &©

2 9 31 _2
h(u, y,, yy) =2t 2652,0 (2’ )b‘ (Fy-Fy) “(1-F ) &, ¥,
(107)

Similarly for n, = 3, we want to choose ny values of .
x from F such that the total number of x's greater than Yys
Yoo and y3 is equal to u. Again,those values of x between
Yo and y3 are counted twice, while those greater than ) are
counted three times. The resulting joint density function of u,

yl’ yz, and y3 under these circumstances is

8./2 &/3 .
n o
= 1 3 3.
(v, ¥15 755 ¥5) = 3L Z 2683’0 65 155 1, F, “(F,-F)
1,70 1,=0
i i, &, &, &

F) Y1op) 2 —1 2 3 1.8
Fy) “(1-F,) T, @, dys" (1.8)

where il denotes the number of x's greater than Yo and less




than y3 and 12 denotes the number of x's greater than 135'
The joint density function for the general case can be found
by using techniques similar to those used in the previous cases.

This argument yields
g/2 o2/l T afm

h(u, ¥y eeer ¥, ) =0t ces . L
” 2 11§0 1n£2=o 1%2-:1:0 a”2 9

- 4

! n, cnz
G, dys eees 1n2_1> Fp TEF) T

i -k
i -2 -1
1 b R -l

2. (1.9)
Now the distribution of u under the mull hypothesis: F =G,

can be found by integrating the y's over the range - » < ¥ < vee

< In < ® ., To simplify the integration, we transform the variables

2
of integration from ¥y te F(yi) = F;, and the new range of in-

tegration is 0 < Fl < een < Fn < 1, We will first consider the
2
special cases of n, = 1,2, 3 and then extend the results to the

gereral case.

For n, = 1, we substitute Fl = C'l in (1.4) and integrate.



This yields
1

ny n,-u u
q:o(u) = I 631,0 (u) Fl (l-Fl) dFl = 681,0/(n1+'1) (1.10)
0 L]

Again in the case n, = 2, we substitute Fi = Gi’ i=1, 2 into

(1.7) and integrate. Thus

§,/2
%2 1
Po(u) =2t Z‘ez,o <2, 1 f F 2‘F1) (1-F,) "dF) dF,
170 (1.11)
Fi
Letting Q = 7 in the inner integral, (1.11) becomes
2
2
£y/ 11
. +E,.+1 i
2. %2 2tn 1
@, (u) = 21 Zaaz,o<2’i [[e2ua2as A (1-F,) “dF, ,
1,=0 00
(1.12)

which yields two complete Beta functions upon integration. The re-
sulting expression in simplified form is

2. ny!
¢ (u) = (A 2T e (0, (§)/2) -8, +1] (1.13)

o}

Similarly the case for n, = 3 yields three complete Beta

function integrals that can be simplified to

3 %

L n,t

- L

%) = (T i }_jo max [0, (£,/3) -8, +1] (1.14)

1




The general case for arbitrary n, can be developed in the
same manner starting with (1.9). The resulting integrals simplify
to n, complete Beta functions. These results can be simplified

to yield

n,! n,}
1,20 1 .=0 :
1 ny-2 (1.15)

As a check, ¢b(u) was svaluated for the cases n, = 8, 11§:n1 <8,
and 0<u< Dy which showed complete agreement with the results

given by Mann and Whitneys' recursive formulas (1.2;.

1.3.1 Pover of U Test Against the Alternatives of Translation in
th,; Exponential Population.

Here the alternative hypothesis considered is

F(x) = 1-¢% x>0,
=0 x<0,
Ha (1.15)
Gly) = 1-e (Ve y2a,
= 0 y<a, wvhere a> 0.

Let wa(u) denote the probability of U taking on the

value u given that Ha is true., Then

wa(u) = I vas f h(u, Fyr eees ynz) dy; eee dynz (1.16)

where h 1is given by (1.9). We will first consider the results
for the special cases of n, = 1, 2, 3 and then will extend the

PRS- |
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results to the general case. For convenience of notation we further

let
NT=e2, y=1-7. (1.17)

Then for n2 = 1, the function to be evaluated under the alterna-

tive hypothesis H, is

Pylu) = I 681,0 £
yl-—'-.

b g
1 F. 1(1-F1) 1

(1.18)
1 i

Since Gl =0 for N < a, the range of integration on y, can be

reduced to a < Y1 < @, and we can substitute
Fi=vy+ e, =1- n(l-Gl) valid for a < ¢,

into (1.18). This yields
1
n\ g =« g
¢ (u) = <§i)n 1 651,OJ' (y +1G,) l(1—(11) 1 G, (1.19)
0

«
Now if we expand (y + 1 Gl) 1 by the binomial theorem and inter-

change the order of summation and integration, we get

°(1 '
n d -v E g
-1 1 1
v=0 (1.20)
The resulting Beta function can be simplified to yield

[.d -v Elﬂj '
9,(u) = nt 1t 8. ,0 Z /ey =v)t(g pven)t]
v=0 (1.21)

B
o
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Likewise in the case n, = 2, (1.16) becomes

2
§y/2
9, (w) =2t ) %,,0 (z' A j J' F, (r-x-‘l)
i 'O ,=8 y,=a

1,
(1-?) dl?l 2 (1.22)

vhere the range of the y's has been reduced to a< n < ) {=>,
since G = 0 for y < a. Now substituting
Fy=y+MGy=1-mW1-6y) valid for a<y < (1.23)

c(
n (1.22) and expanding the term (y + 1 C'l) 2 ve get -

o O\ (%)% Lh
Pylu) = 21 2632,02(,i]>v yo 1
1,0

1 G,

) v L9 4
f f Gy (Gp6y) “(1G,) ~ &6y &Gy (1.24)
00

By transforming the variables of integration we get two complete

Beta functions which can be simplified to

1/2

-v E +v+1
- 2
cpa(u) = nl'. 21 L_. 82,0 Z [— ]

i 1’0 v=0

[(ty=v) L (g hves #2)1]7L . (1.25)
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In the case n, = 3, we get three complete Beta functions.
These can be simplified to yield

/2 %,/3 4 -

ow =mt3t ) ¥ %,,0 ) MERCEAE
1,0 1,0 v=0

[(t3=v) t(ag+v+3) 0]t . (1.26)

Following a development along the lines used in the previous
special cases, we get in the general case n, complete Beta func-

tions. These simplify to give

g (n,=1) ¢ ./n
;1/2 n2-2/ 2 n,-1/ "2

= '. " L X ]
¢a(u) E nz iZ i Z'O i Z‘O aan2’0
1 n2-2 nz-l
c(n K -y A +v
2 n, n,
Z Y n /& =)L (A +vin,)i] (1.27)
v_—_o % 2 .
The power of the test can be computed from (1.27) by evalu-
ating Y
Pr{U<u |8, )= ) o (1.28)
u=0

where U, is determined from o, the level of significance, by

evaluating

Pr{U<u ]H J<x
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1.4 Power of U Test Against the Alternstives of Change in Location
and Scale in the Rectangular Dopulatiou.

The alternative hypothesis is given by

F(x) = x 0<x<1,
= 0 x<0,
= 1 x>1,
Heo (1.29)
G(y) = (y-a)/8 a<y<ate,
= 0 y<a,
=1 y > até , where a> 0, 6> 0 .

Let ¢ae(u) denote the probability of U taking on the

velue u given that Hyo 1s true. Then as in (1.16)

(1.30)

Pyo(u) = ff B, ¥5 eees ynz) dy oo dynz ,

where h 1is given by (1.9). For notational convenience let
b = 1 -a . (chl)

There are two cases to be distinguished, namely:

(1) a+08<1, (11) a+08> 1.

l4.1 a+0s<1,

As before, we will consider first tne three special cases,
n, = 1, 2, 3 and then will extend the results to the general case.

Then for n, = 1, the function to be evaluated under the

alternative hypothesis Hae is:




.o a
B

n=° ny * {1
Papl®) = [ %0l )R (1-F)) © &y (1.32)

yl= - O

Since G1 =0 for Y1 < a and Gl =1 for 1 > a + @, the range
of integration on y; can be reduced to a < y1 <a+80, and we

can substitute

F1=a+961 valid for a§y153+9,
in (1.32). This yields
1
n « £
1 1’ 0 *
1 %1

and interchange

Now if we expand (a + 6 Gl) and (b - 8 C'l)

the order of summation and integration, we get

o« &

. 1 "1

(" ] 51) q A7V 8§ vk

cPaB(u)—((l 681,02 Z(v q (-1)% a b ®
\ v=0 g=0

1

v
IGI &G,y (1.34)
0

This expression can be integrated and simplified to yield

“ %
_ , q C(l-V cl"q V+q . )
Tapl) =0yt o) LD et e e g e
v=0 gq=0 -1
vl q! (viq+l)] . (1.35)
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T Likewise in the case n, =2, (1.30) becomes

o & b
2
@ (u) =21 )8 F(F-—F)(l—F)dJcD )
1 /
(1.36) K
where the range of the y's has beern reduced to a % ylsyz < at+d |

since G =0 for y<a and G =1 for y> a + 8. Now substitu-

ing F'J=a4-e(}J

. i
\ . in (1.36) and expanding the terms (a + @ G].)c‘2 and (: -9 G% 1

valid for a € ¥ Sa+8@ (1.37)

I . we get
;1/2 )
/i q c(z-v i,
Pp(u) = Z‘ez,oz Z(gz'ix>< )\ (-1) a
v=0 q=0
q=
§,tvig g, a
2 2
| J' c (Gy=G)) 2 G, &Gy Gy (1.38)
0 ©
Letting Q = Gl/G?.’ the innermost integral in (1.38) yields a K

complete Beta function. The resulting expression when integrated

and simplified becomes

g./2 «, 1 ,
oy o ! P o @ v Ljm Gytvk
@p(u) = nt 21 Zss 0 Z Z[(—l) al bl e ]
1,0 27" 420 q=0

(qt (11-q)’.(e(2-v)‘.(§2+v+l)'-(§2+V+q+2)]-1 . (1.39)
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In the case n, = 3, we get two complete Beta functions

that can be simplified to yield

8/28,/3  « 4,

g =m 3 [ Loy ol LU WO
1,0 1,0 2 v=0 q=0

4v)t (1,-q)t (7‘3'124"”2)1()‘3'12+v+q+3)]-1 . (1.40)

Following a development along the lines used in the previous
special cases, we get in the general case n, - 1 complete Beta

functions. The resulting integrated expression can be simplified

to give
8)/2 8,/3 1/ n “n, 1n2-l
Pgp(u) = mpt myl ) Z Z ) Z Z
1,20 1,0 ny’ v=0 920

« v 1 J=q A -1 .+vig
[(-l)q . n, . n, 1 . n, n, 1 ]

[q!(dnz-v)l(inz_l-q)l(xn -1 _qtven, =1)L(A ot _l+v+q+n2)]-
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1.4.2 a +9=1.
In this special case (1.41) can be further simplified to

yield
§1/ 2 52/ 3 g1'12--1/ ) <=(txz inz-l
o =mpimt Y Y L Y 5% o )
1,70 1,=0 tp, 1 "2 v=0 q=0
ta(nz-v \n 12"/
2 t 1 t .
. ((<1)a © b “] [q-(dnz—V).(inz_l-q)-
, ,yq-1
(Xn2-1n2_1+v+n2-l) 1 ( An2—1n2_1w+q-rn2) ] L)

1.4.3 a+8>1.

This case must be further subdivided into two subcases,
namely: (1) a<1,

(11) a> 1.

l.4.3.1 a<1l.

For a <1, the range of integration for y can be split
into four parts, namely: (1) -=<y<a, (2) a<y<l,
(3) 1<y<a+8, (4) a+8<y<=, Over parts (1) and (4)
the value of the integral is zero since G is constant. Hence, we

will consider only the ranges (2) and (3).
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For the case of n, = 1, (1.30) becomes

1l at+g
2\ 5 51
= 1! -
Paglw) = 1t .r%l,o g )1 (P T @y ey, [ wy
y,=8 y1=1
(1.43)
since gl =u and u =0 implies that Bl =0.
Consider Pl(u) defired by
1
- P "1\.5 5]
Py(w) = (n0) . ,0 <§1 (AR Ty (1.44)
y,=8

Perform the following substitution: F, =a+0G;, asy s1.

Then (1.44) becomes
b/ a o .
P (w) = (nt)7 _faal’o(gi) (a+86G) "(b-86G) "y
0 (1.45)

If we expand both biromials and integrate the resulting expression,

(1.45) takes the form:

< 5
' q dl-v §1+v+1
P (u) = GBI,OZ Z[a-l) at b 100 v! qb (x)=v)L
v=0 q=0

(8,-)t (vig+l) e . (1.46)




19

If we define

Polu) =8, o/nyt (1.47)

then since Glfl) =b/8 , (1.43) can be written as

Paglu) = myt 1t [Py(u) + Py(u)(1 - b/6)] (1.48)

If n, =2, the expression for wae(u) can be broken down

into three integrals as follows:

; £./2 w
y j& ! mo\ % % h
q(w) =20 [ 2652,0 g, 1)) T (FpFy) “(1-F,) Taoydcy ¢
y2=a yi~e il=0
a+e 1 n\ % g,
21 ‘f f°al,0 e, FpU(1F) T, +
y2=l yl=a
até y
21 8, o J' f &) &, (1.49)
Y571 y;=1 ’
Note that when ik-l = 0, then gk = gk-l’ di = qk-l’ kk = Ak-l’

3k = Bk-l (k =2, 3, ouu, n2). Also u = 0 implies that Bl = 0.
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Let us consider the first of the above three integrals by defining

1 T %/2
(u)‘(nl,) I J' 2532,0 52’ F (F-l) (1- ) dG dG,,
yo=a y,=a i ‘0
(1.50)
We can substitute
F,=a+9 G, 3 asy sl, (1.51)

into (1.50). Also we can expand the binomials and interchange the

order of summation and integration. This yields

gl/ 2 °(2 il N d\ "/i
-1 2Y (1), \a .
e = e T Doy (2,1 )
1‘0 v=0 q=0
1.-q € 4v 72 3
%-v 1,-q E v v
2 1 2 - 2-q
AN B RS A
2 (1.52)
This expression integrates and simplifies to
8/2 % 1
q d -v § +il+v+2 2
=) ) Z[(-l) e o at (4,-a)t -
1—0 v=0 gq=0

(oy=v) (8, #v+1) L(E hrtq#2) ] 72

(1.53)
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With this notation (1.49) can be written as
Bye(w) = myt 20 [Py(u) + P (w)(1 - b/8) + Po(u)(1 - b/e)2(21)7]
(1.54)

For n, = 3, the expression for (pae(u) becomes

v, 7, £,/2 8,/3

= 11 [ ¢
ot =3 I 07T T ) ;.

-a y,=a yi=a 11—0 i,=0

4 1

5

5)

a0 1y, 8,/2

' €
J 2652,0 \;;11)?:2(""2'?1) 2.
/

3t J'
=1 y,=8 y;=a i ‘O

3

i

1
(1-F2) d“'l d}z d}3 +

at+o y « g
1 1.
3 I ]‘ f . ,0 ( )Fl (1-F) ' &) &, @y ¢+

y3 =1 yz'l yl—a

a+é y

IIM Ty .

7471 ¥571 y171 (1.55)




Now, if we define
1 1 yj Y, g1/2 g2/3
=G [ [0 [ ] z( i )
3’ 1’ "2

y3—a y2 a y;=a i —0 i.=0

« g i i
3 3 1 2
F (FZ'Fi) (F3- 2) (1-F3) &Gy d32 d33 ’

which upon integration and simplification, becomes

gl/z g2/3 « 1, .
s T DL L0t o

1,20 1,=0 v=0 q=0

(o3 qt (t39)t (1,-0)t (Azmiy+vi2)t (x3-12+v+q+3)]’1 ,

(1.56)
then (1.55) becomes
3
Ppolu) = myt 31 ) {Pj(u) (l-b/e)3"[(3-1)'.]'1} :
J=0 (1.57)

In an analogous fashion for the general case, we can define

PJ(u) and obtain

9/2 8,/ %1y,

R R N D ‘*."‘a“"b*a"*i].
1,0 1, ;=0 v=0 g=0

(1.58)

] 1 1
[ej ql (G(J-v)'. (1.1_1-q).(>‘j-1'1 vt (xJ 4= l+v+q+j)T ,
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for §>2, with Po(u), Pl(u) as previously defined.

Then

™ nyd
“’ae(“) =t oyt Z {Pj(u) (1-b/8) [(nz-j)'.l_l}. (1.59)
§=0

14.3.2 a 21

In the case a 21, the results are trivial, namely:

at+o In Y
2 2
¢ae(u) = nz'c bu’o I J' ss e ‘f mlﬁz...d}hz— 6u’o .
Yn,"® Yp 178 yy-e
2 2 : (1.60)
Using the above results for wae(u), the power of the U test
under the alternative hypothesis can be calculated from
™
o
= 1.61
Pr{U s U | Hae} ), Paglw) ( )
u=0
where Uy is determined by the level of significance, «, from

the relation

Pr{U <u, | H)) < «

1.5 Results
Tables 1.1 and 1.2 compare the powers of the Mann-Whitney U

test against Mood's median test, The numerical results for Mood's

test presented in Tables 1.1 and 1.2 were taken from Lecne,

L2
4
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Chakravarti and Alanen [13]. In Table 1.1, the exponential alterna-
tive is considered for various values of the location parameter, a,
for a = 0(0.1)1, 1.5, 2, 3, for sample sizes 11 and 15. It should
be noted that when the location parameter is zero, we get the null
distribution with the power equal to the level of significance, «.
Since the distributions of the test statistics are discrete, the
values of « do not in general coincide for both the tests. Hence,
allhough many different cases have been computed, only those values
that are relatively close together and which indicate the general
trend, have been tabulated in Table 1.1. The conclusions that can
oe drawn from this table (relative to the exponential alteinative)are:
1) If ny is smaller than Ny the Mann-Whitney test is more
powerful than Mood's test. To note this increase of power,
several cases were intentionally chosen where the level of
significance for the Mann-Whitney test was slightly less
than that of the Mood test. In these cases, the power of
Mann-wWhitney's test rapidly overtakes Mood's test as the
location parameter, a, increases.
Mood's test is more powerful

2) If n, 4is larger than n

1 2’
than the Mann-Wnitney test. Likewise, to note this increase
of power, several cases were intentionally chosen where the

level of significance for Mood's test was slightly less than
that of the Mann-Whitney test. In these cases, the power of

Mood's test rapidly overtakes Mann-Whitney's test as a
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increases.

3) In those cases in which n)> 0, the two test procedures
seem to exhibit powers that are approximately the same..

The rectangular alternative for the special case in which
® =1 - a, is considered in Table 1.2. The values of the parameter,
a, range between 0.0 and 0.9 with increments of 0.1 (where the
value of Q.0 indicates the level of significance, «, of the test
under the null hypothesis). The totel sample sizes chosen are again,
11 and 15. As in the case of the exponential alternatives,the levels
of significance do not in general coincide, since the distributions
are discrete, but in those cases in which the levels are relatively
close together, the results indicate that the conclusions drawn from
the exponential data continue to hold in the rectangular case.

In both of these tables, a 1is non~negative. If the altema-
tive hypothesis were for a < 0, the same situation would hold.

That is, if n, > ., the Mood test would exhibit more power, while
the Mann-Whitney test woui. be more powerful for n, < n,.

These results (that is, with respect to the exponential and
rectangular alternatives) indicate that in those cases when annz,
it is preferable to use Mood's median test over the Mann-Whitney U
test. A further advantage in the case of Mood's test is that the
experiment needs to be run only until the median of the combined
sample has been observed. In many experiments, this fact gives rise
to a reduction in the cost, due to savings in time, experimental

material, availability of equipment, and the like.
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1.6 Further Extensions.

First, the results in Tables I and II should be extended to
larger sample sizes to see if the previous results still hold. This
extension will also indicate how rapidly the results approach the
asymptotic situation, and the complete tables can be used to de-
termine ihe sample size required to obtain a given power.

Second, tables similar to Tables I and II should be com-
puted for comparing the Mann-Whitney U test with Massey's two
sample test.

Third, exponential alternatives with a change in the scale
parameter should be considered. Power functions for these alterna-
tives can be developed for Mood's, Massey's and Mann-Whitney's two
sample tests, and tables comparing these results can be computed.

Fourth, an attempt should be made to analytically compare
the power functions of Mood's, Massey's and Mann-Whitney's tests
independent of the computational results to see if the same conclu-
sions are indicated.

Fifth, an attempt should be made to develop a class of
functions to which the results of this chapter can be applied.

Sixth, the power function for the Mann-Whitney U test
can be extended to the case of ¢ samples for whatevey tests are

developed for the c¢ ~sample case,
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CHAPTER II

ASYMPTOTIC RELATIVE EFFICIENCY OF THE MANN-WHITNEY U TEST AGAINST AN
EXPONENTIAT, ALTERNATIVE

2.1 Introduction.

In Chapter 1, the exact power of the Mann-Whitney two sample
U test for discriminating between two populations was derived. Two
types of alternatives were considered; namely, a change in location
of an exponential population and a change in location and scale of a
rectangular population,

The asymptotic relative efficiency of the Mann-Whitney U test
against an alternative of a change in location of a normal population
was shown to be 3/m [16], [1]. The asymptotic relative efficienciss
of Mood's test based or the median, and Massey's test based on the
first quartile and the median, when compared againat the likelihood
ratio test appropriate for detecting a shift in location of an expon-
ential population, were found to be zero by Chakravarti, Leone, and
Alanen [ 3].

In this chapter the asymptotic relative efficiencies of tke
Mann-Whitney U test, when compared with the likelihood ratio test,
Mood's and Massey's tests for detecting a shift in location of an

exponential population, are considered.
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2.2 Limiting Distribution of the Mann-Whitney U Statistic.

Let us define the statistic V by
n,,n
1’72
= 2.1
an’nz U/(nlnz) ) (2.1)
then
= -1
E(an,nz) = E(U) [mn,]7" (2.2)
and

Var(an’nz) = Var(U) [nlnz]'2 (2.3)

It has been shown by Lehmann, [11] and [12], that
i\
V - E V L]
"2 \npm, ( nl’“z)) (2:4)
has an asymptotic normal distribution, provided that as ny,n, 3 ®,
(nz/nl) 5 constant < @ , (2.5)
Furthermore, Mann and Whitney [14] have shown that

E(V ) =1GaF , (2.6
) =1 :

nl,

and

nanVar(an’n2) = [(ny#n,+1)/12]4((n)-1) (\-¢)) J#H{(nr1)(A-s,) -

[(nl+n2-l))\2] ’ (2.7)
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where

= _ 2
X—b-IGﬂ,eloﬂﬁ)—demam ¢, = (13)-[(1-FP e
Thus, the expressions for the mean and variance of U can be written
as E(U) = nyn, [o aF (2.8)
172 ’ .

Var(U) = (nlnz){[(nl+n2+1)/12]+(n1-1)(k-¢1)+(n2-l)(l-¢2) -

2
(ny#ny-IN7} (2.9)
With the exponential alternative considered in Chapter 1 (See Equa-

“ion (1.15)), (2.8) and (2.9) become

E(U) = (nyn,/2) ™ (2.10)

3
and

Var(u) = <n1n2/12)[(n1+n2+1)+z(nl-1)(1-e'3)+2(n2-1)(1-e°%(1-ze'°)-

3(ny #n,-1) (1-e'a)2] . (2.11)

2.3 Asymptotic Relative Efficiency of the Mann-Whitney U Test.

Let @, the parameter of interest, label the sequence of

distributions, Consider the null hypothesis Ho t 8= eo and the

sequence of alternatives . : em = eo + dm’ for some positive r

and d. Let N(8) and N"(8) be respectively the sample sizes re-

quired by two test procedures t and t", to achieve the same power

(1-8) at the same level of significance «, where & 1is the dif-

ference em-eo . Then, the asymptotic efficiency of ** relative to
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T 13 defined as:

Eff(1"/v) = Lim [N(8)/N (8)]
§30

Since for the Mann-Whitney U test,

(2.12)

Lin Py {[(ny)¥(0/nn, - B(U/ny,)) 1 myn,Var(U/n n,) 1 2 ] =

Rt

x 2
=40 = (mF [ g (2.13)

where en = an-b and 90 = 0, the following theorem due to
> )

Hoeffding and Rosenblatt [ 9] can be applied:

Theorem: If for a sequence of test procedures {tn}, where tn
based on a random sample of size n, the following regularity

conditions hold:

a) B (8 )<, LimB (8 ) =«, where B (8) is the
- n_). n (o] n

probability of rejecting the null hypothesis,

is

b) There exists a positive r and normalizing functions

w(8) and o(8) such that for any real x and any

a>o0,

X .2
Lim Py (" [(, - u(e,))/o(0 )< x}=a(x)=(2m 7t [ at

©
n3 n -
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where @ =8+ anT
¢) w(®) has a derivative u'(eo) at 6  and u'(eo) >0,
d) o(8) is continuous and positive at 8 = 8, »
then

nL_i’mmsn(ec,+dn") =4lan'(e)/ole) -] , (2.14)

where Q(-Kx) = o . The efficiency index N(§) of the test

based on tn Fas the expression

(2.15)

N(8) =[O gng) o0)/i8 u' (6,))1Y

0, satisfies all

i

The Mann-Whitney test procedure with eo
of the hypotheses of Hoeffding and Rosenblatt's theorem with the . .

exception of part (c), u'(eo) > 0. In this case

w' (90) = o (n1n2/2)e

o

which for 90 = 0 becomes

w'(0) = - (nln2/2) <0

However, the restriction that u'(eo) > 0 1s not necessary in the
case of r = #, since Pitman's original result for r = # does not
require this restrictior on u'(eo), (18] . Since for the Mann-~
Whitney test procedure r = #, we can ignore the restriction on

u'(eo) and apply the above theorem with eo = 0 . This ylelds

Ny(8) = {(Aé(ﬂ\a)[nlnzVar(U/nlnz)o]é[‘m'(U/”l"z)o]“l}2 ,  (2.16)
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where E'(U/nlnz) denotes differentiation with respect to & and

the subseript o Deans evaluate at 6 = 0.

Now, for the exponential alternatives with a shift in the

location parameter, (2.16) becomes

N, (8) [(x +x )2((n+n +1)/12)é ’1

1(

[(ag) ?(ny+n,#1) (3 6%) 71 ) (2.17)

Similar results nave been derived for Mood's and Massey's
tests, and the likelihood ratio test by Chakravarti, Leone, and

Alanen [ 3], Their results are summarized below:

For Mood's test procedure based on the median

Ny(8) = [(Arg) ?(nyn,) (n, 82)71] ) (2.18)

For Mood's test procedure based on the first quartile

Ny(8) = [(ghrg) (nl+n2)(3n 5™ . (2.19)

For Massey's test procedure based on the first quartile and median

N,(8) = [(ny#n,) &% (3n, 697 (2.20)

where A2 is a solution of the equation

®
f £, 8%) 4 = 1 - B,
m

[o]
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-

and f is the non-central chi-Bquare density function with two

degrees of freedom.
For the Likelihood Ratio test procedure

N*(8) = D*/s , - (2.22)

where D* denotes the solution of H(D*) = 1-8,

and H(d) = lim g (8 +in™)
ny o

It is easily seen that the asymptotic efficiency of all of the above

tests relative to the likelihood ratio test is zero, since
N”(o)/Ni(a) 20 as 8§30 fori=1,2,3,4. (2.23)

Likewise, the asymptotic efficiency of the Mann-Whitney test relative

to the median test is

_ _ -1
Ef£(1y,7,) = Ny(8)/N1(6) = 3(ny+n,) (ny(ny+n,#1)]7" = 3/n,
(2.24)
The asymptotic efficiency of the Mann-Whitney test relative to the

test based on the first quartile is

Eff(1y,7,) = N3(6)/Ny(8) = (mptn,) [ny(ny+n,#1)] Fay ny 7t

(2.25)
Also, the asymptotic efficiency of the Mann-Whitney test relative to
Massey's test based on the first quartile and the median is

BEE(T),m,) = N,(8)/Ny(8) = (ny+n,)a%[ny(n +uy#1) (4 )21

2 2,~1
A [nz(xc(ﬂe) ]

. (2.26)
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2.4 Further Extensions,

First, the results given in the above equations can be
tabulated for various sample sizes, and a comparison can be made
to determine the asymptotically most efficient test procedure
among those considered.

Second, the above tests can be compared with the standard

t test for detecting a shift in the location parameter, when

the usual assumption of normality is made.




CHAPTER I1I

EXACT POWER OF SOME TESTS BASED ON A GENERALIZATION OF MOOD'S
STATISTIC

3.1 Introduction.

Ir many practical situations, such as life testing, the
sample observations arise in order of their magnitude, so that the
first observation Xl is always the smallest, the second observa-

tion X, 4s second smallest, and so on. To discriminate between

2
two populations on the basis of two such ordered samples, many rank
tests are available. Of them, Mood's test [16) based on the median
of the combined samples and Massey's extension of Mood's test [15]
based on fractiles, have much to commend themselves as quick tests.
The exact power of these tests against the alternatives of exponen-
tial and rectangular populations for the case of two populations has
been investigated in detail by Chakravarti, Leone, and Alanen [13].
The purpose of this investigation is to extend the results available
for Mood's two sample test to the case of discriminating among «c

populations on the basis of ¢ ordered samples. The corresponding

extension of Massey's test is investigated in a subsequent chapter.

3.2 The ¢ Sample Problem.

Let {xl(i), xz(i), ooy X_ (1) } for 1 =1, 2, eee, ¢ be
i

¢ sets of independently distributed random variables with continuous

cumulative distribution functions Fi’ respectively. We wish ta




38

test the hypothesis
H s Fl(x) =P (x) = ... = Fc(x) ,
against the alternative

H, : Fl(x) > Fz(x) D oeee D Fc(x) .

c
Denote the size of the combined sample by n = I ny and

i=1
for the sake of simplicity assume that n = 2r + 1, where r 4is an
integer. Let Z(l) < 2(2) <400 K Z(n) be the ordered combined
sample. Z = Z(r+l) denotes the median of the combined sample, and

v. denotes the number of observations in the ith

sample less
than Z(1=1, 2, ..., ¢).

Thus, the observations can be arranged to forma 2 by ¢
contingency table as follows:

Number in Sample below and above Median.

— e e—
Category ISt Sample 2nd Sample | ... cth Sample { Total
Less than 2 Uy uy u, r
Greater than or . h
equal to 2Z B} By =43 Be = Y r+l
Total n, n, voe n, n

Subject to restrictions




39

We can define a statistic T by

c
- 2 -1 2 -1
T= E: {(ui-rni/n) (rni/n) + [ni-ui-(r+1)n1/n] [(r+1)ni/n] }.

1= (3.2)
Then a test of size & based on the statistic T 1is as follows:

reject Ho if T2 Ex ’
accept Ho if TK< 9« ,
where t, 1is defined by Pr{T 2 b | Hy } s«

This problem is equivalent to testing a 2 by ¢ contingency

table with fixed marginal sums for independence between columns.

3.3 The Null Distribution.

We need to develop an expression for the densi;y function
h(ul, cees U, 2) of Ui’ (1i=1, 2, eeey ¢), and Z. Let us
assume that the median Z 1is from sample j, then the probability

Pj(ul’ ceey Uyy 2 ) of obtaining these values in the contingency

table is given by

c u n,=-u
,2) = (nj-uj)x{ T ((Fy(2)) H(1-Fy(z)) * 11}--

P (u 9 seey U
1 1=1

c

]-1 dFj(z)

[l-FJ(Z)

dz
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From Equation - (3.3), we obtain

c

h(ul, cees Uy z) = z:Pj(ul, ceey U
J=1

c? z2)

¢ dF
- ° ! i -1 _J
'Z"‘;'“J”‘{fll“f’i’ a-F) © ORI

3=l

(3.4)

The null distribution ¢o(ul, cees uc) of Ui’ (1 =21, 2, veey ),

under the null hypothesis is derived from h(ul, oo Uy z) by

substituting

Fl(z) = Fz(z) = see = F (2) = F(2)

in (3.4) and integrating the resulting expression over the range

of z. This yields

1
9 (Ugs +ees uy) = K(r+l) J; F (1-F)T aF

AN

This result is in agreement with that obtained by

Chakravarti, Leone, and Alanen [13].

(3.5)
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3.4 Power Function of Median T Test Against the Alternative of
Irapslation in the Exponential Population.

Here the alternative hypothesis considered is:

- (x-a,)
Pi(x) =l-e » X 28

H =0 sy X < a;

where a, ., > a, (1 =1, 2, e0esy c=1), 8 > 0.

(3.6)
The only necessary requirement is that a, > a; (1 =21, 2, ¢eesy c-1).

The joint distribution of the Ui's is obtained by sub-
stituting (3.6) in the expression for the joint density function
h(ul, caey uc,z) given by (3.4) and integrating over the range of
2. The range of 2z can be reduced to a) <z <=, since all of

the Fi's are zero for z < a; . This gives us

PI‘{Ui = ui l i = l, 2’ ceey C} =¢a(ul, seey uc)

¢ ® e n,-u -1
=) (ag-u)k [ {0 [F, () *a-p, ()} "§-F, (2)] @Ry (a)
321 PR

1 (3.7)

Now, we can write




and obtain

where

"

S, (u)

Since Fi =

Also, all te

we define u

s (u) =

where §

i,

Let

42
c
By(ugs weeru) = ) S (W) (3.8)
t=1
t+l ui
i -1
Z(nj-uj)xf {n'[F Harp) - dF,
=1 z=a, * (3.9)
0 for t+#1< i< c, St(u) will be zero unless u; = 0.
rms for § > t will be zero, since Fj = 0. Thus, if
41 = 0 (3.9) reduces to
c t+l N u
ny= i .
§=1 2= t
-1
[l—Fj] dF, (3.10)
is the Kronecker delta.
-(a,-a
_ i i
My 4= @
Vit oMy (3.11)
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Then we can substitute

Fi =1- ni’t(l—Ft) = Yyt + ni,tFt’ for a, <z<a ., 1<i<t,

t+1
(3.12)
in (3.10). This gives us

¢ (8,,)) 4
Sy(a) = ) (n- J)K(Tro O) [n-[l-ni ERIEE

=1 1=t U141 g 171

t
b)) (n ui)-l

t n,-u
17 1=1
{““1 ¢ }[1‘” Fy (3.13)

u
Expanding [1—-T]i’t(l—Ft)] . by the binomial theorem, we get:

t 1 c 1 t
u) -K Z('lj-uj)’{ ,OJ Z see Z {i'ﬂ'l[( l)
F.(a,,.)
I AN AN ] z (n -u,+q, ) -1
AN =3 + 1

(JCM)
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L This expression can be integrated to yield:

t Yy Yy

] t q
St(u)=l( Z(n-u) T 0 y... Z{‘I‘!’[(»l)i
R R N FE O T I — {i=1
J‘l q.;.—o qt'o
n, -u \ Z (n -uihi)] t -1
1793 My) (94 ] [1 =1 [2( )
i )t / ay Mg, 41 __; L1 U1y .
(3.15) \
For the case in which t = 1, (3.10) reduces to
c 2 u n,-u,-1
1 171
S, (u) = (n -u, )K ] F,(1-F,) dr (3.16)
™
which can be integrated to yield
1™
1{“ uptay L -1
(u) =K (-1) )(n ~Uy=a,)Y (u,+q,+1]
1 [i =1 i+1,0 Zo 1°1/71,2 b RS | .
(3.17)

Consider the special case ir which 8y T8y T wee T ac_l—O

and a, = a > 0. Let

nl,cz 1"Z,cz e




then (3.7) becomes

¢3(Uc’uc) =

This can be written

¢a(Uc:uc)

Substitute F =

¢a(Uc!u ) =K &

c

r
€ q
1
u_,0 Z(-l)
c -
Ql‘o

45

SO > c ﬁc
(N U)K j F %(1-F)

z=0

(n-u )X f F ¢(1-F)
2=0

as

=(%-ﬂxau’o.[F

¢ z2=0

(W -T)K f F S(1-F)
A

UC NC
(n_-u )X J' F %(1-F)

z=a

r+q1

q4°q
K(r+1) Z Z(-l) 172
3,0 q,=0

c

(1-F) ©

N -r\ _ Y
e -
q1> (Nc-r-ql) IOF

o) o

-J -1l u n_-u '\\

c

¢ 6 %a<c)® CarF+

Uc n,-u, -1 0

¢(1G) © s i

(3.19)

N -r-1
4drF +

-Uc-l u,
(l-G)

—u

ch+

—ﬁc u, nc—uc—l
G (1-G) &G

(3.20)

1-m1-G) fora<z<e, in (3.20) and obtain

r4q
Lar o+

’

(3.21)

J,l u+q;2
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which upon intcgration yields

Nc-r -
_ qp (No-r)
i) =K 8y o ) (-1) ap JFera)y

T+, +1

9,0 [r+q, +1] 14

ay*a, (U, frta 3
K(rtl) ) ) (-1) 2<q;) q21> [uta,+1) 7
(3.22)

If ¢ =2, this result agrees with that obtaired by Leone,
Chakravarti, and Alanen [13].
These results can be used to compute the power of the test

for the case of the exponential alternative by first defining px by
Pr{T>t, |H }2x,

where the probability is evaluated using (3.5). The power is calcu-

lated from Pr{ T > ty | H, } = 5 ¢8(ul, ceey uc), such that

i

>t .

3.5 Power Function of the Median T Test Against Alternatives of
Change in Location and Scale of the Rectangular Population.

In this case, two sets of alternative hypotheses will be

considered, namely: one in which the location parameter changes and

another in which the scale parameter varies.
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3.5.1 Change in Location of the Recta: mlar Population.
The alternative hypothesis is

Fi(x) =x-a for a <x<1l+ a, ,

H =0 for x< a;
=1 for x>1+a, (3.23)

where again the populations are ordered according to their location

parameters:

0< al<.az_<... < a,

The joint distribution of the Ui's is obtained by substi-
tuting (3.23) for Fi in the expression for the joint density
function h(ul, cees Uy z) given in (3.4) and integrating with re-
spect to 2. The range of 2z can be reduced to 2, <z<1+ aé,

since all of the Fi's are zero for z < a; and one for z > 1 +ac.

This yields

Pr{ Uy =y | 1=1,2, eveey ¢} = wa(ul, ceey uc)

¢ ta, . uy n, -u, _
= Jnmuk [0 (R (2) H1-F,(2)) F 3 -R(a) I (o).
373 4= 1 i J J
J=1 z=ay
(3.24)
The method used to evaluate the integral in (3.24) depends upon the

relative sizes of the ai's. In this section we will consider only

one situation, that is perhaps the most interesting. Hcwever, any

other possible situations can be handled in an analogous fashion.
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For the developments in this section we will assume that

a, < a) + 1 (3.25)

.

Then the integral in (3.24) can be partitioned by dividing the range

of 2z into 2c-l1 pieces. This yields

c-1
9p(ups veer u) = ) (P(w) +R () }+Q(u) ,  (3.26)
t=1

where

c Bt41 c (u n. -u L
= \ i 17 -
Py(w) = ) (n-uk [ {gl[l’il (1-F,) ]}[I-FJ] aFy(2)
2=a
t

=1
(3027) "\,

l+at+1
e [u n, -u
R, (u) = Z(nj-uj)K i {n' Fii(l-Fi) i l]}[l-Fj]’l dF,(z)
=1 z=1ta, =1
(3.28)
c 1+a1
c u, n,-u,
Qc(u) = Z(nj-uJ)Kj { I [Fil (l-Fi) i lJ}[l-l-"j]-l dFJ.(z) ,
j=1 z=a =1
¢ (3.29)

Consider Pt(u). Since F, =0 for 1+t<i<ec, Pt(u)

will be zero unless u; = 0. Further,all terms for j > t will be
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zero. Thus for 1< t < ¢, (3.27) reduces to

8t+1 2«1
Pylu) = K/ T oz(“ f{ [ (H?)ii-l}'
i= t+l Yy -
-1
-F, «30
1 FJ] dF g (3.30)
Let
“, 7% Vg T (3.31)
then we can substitute
Fi= ui,t+ Ft , 1-F1= Vi 4T Ft’, for a < <z < 8.1 2 1<i<t,
(3.32)
in (3.30) and expand the resulting binomials. This give us
Y o1 MM MotV
CRUAXY z IR R)
ql— 1-0 v1=0 v j-l:O
K n.-u,~-l n, .-u, n*
Z Z es e —l) ( l l
_ q1 qt 1

- vJ=O Vj +1-O vy

(s 5(“2;*1) ()

(a1) 4 43 (qiw ) +vy

t-l[ -q J} t
1793 PV i=1
I, v F dFt
{i'—'l i,t i,t IO t

(3.33)
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By noting that

-U,=- n,-u

L
v v,

(ny-u,)

(3.33) can be integrated and simplified. This yields

3}, and CHE T

t

“3).

ut_l nl-ul nt-u
v
- O §
Pt(u) - K<—t+l 1,0 Z z Z cee Z (-l)i“l
qt_l=0 vl=0 vt=0
1 1 ?n} Ugdy  nyuy
it Vit
i 1
t-1

ugt z (q +v )+v +1

{ E:[(nj b /“j t]}“t till

t-1

(u+ 2 (qi+vi)+v +1]
i=1

(3.34)

for t =2, 3, ¢ee, -1, Pl(u) is easy to handle and is given by

Py(u) = K T_rza 1’°> Z < )4) (n)-r=v)ul

Similarly (3.28) can be simplified if we note that F

1 <t and hence (3.28) will be zero unless (ni—ui)

+v+l

1,2

[r+v+1]'1

(3.35)

g = 1 for

=0 for i <t.

Also, all terms for j < t will be zero, and for 1< t < e-2, (3.28)

will reduce to

—

L




51

. i T .

Ry(u) = k(T8 Z:(n ) [ T orta- i)

¢ 1=1 P70 3 1=t i

J=t+l 2=l+a,
-1
(1-Fg " ary (3.36)
If we subspitute

Fy i Y P 1Fg = vy o - Fey s (3.37)

for 1+at <z< l+at+l’ t+l1 <1 < ¢, 1n (3.36) and expand the

binomials, we get:

YY) Yo Pes1™Ves BV g vy

R, (u) = x(m 9 TS N N gyttt

=1 P347Yy0 - 2
qt+2-0 qc-O Vt.+1_o .’c_0

n, -u; Dy 417U 41 { ;; L}ui-qi vni-ui-viJ } )
Li‘“’z q4 J Vi+l =gl 1ot Lt

1’ z (agtvyd+ve

- L y=te
[Z(nj-uj'vj)/vj,t+lj I F Fopr
sj=t+l vt,t"‘l

(3.38)

since Vi, 3 = Fj(l+ai) . This expression can be integrated to yield
’
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Ytz Yo P Y P

~-u
c ¢
R, (u) -x<x_rla 8,0 TV N N ) (it

=0 q, =0 v, ,.=0 vc=0

Q42 t41

i “i\ RN FENUE ) { i [uui'qi S
=2\ % Verr ] \imnsp ULatHL Vi,

=t+l

Vt+1+l] .

r+l

Z v

I}

¢ Ut Z (qy+v,)Hvy g +1 ¢
i=t+2
[ Z (nj—uj—vj)/vj’tﬂJ [l Ve 441 [ut+1+z (qi+vi) +
J 1=t4+2

(3.39)

-1 tv _+1
R, ;(u) = K<c‘n'6 )Z(-l) °<§+1\[1-vu_lv§ jl[uc+vc+l]-l .
0

c/

[r+l—vc]

In a similar fashion using (3.31) and (3.32), (3.29) can be

integrated and simplified to give:

(3.40)
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c
Y Yol MY ReYe

Z vy
o=xl o DL LT et ).

- - - AL
ql—O qc_l-O vl—O vc=0 i=1\1 i

c-1

u + I (q,+v,)+v _+1]
n,-u) [c-l u, -y ni-ui-vi][ ¢ 5 1 e J.

v

1,¢

-

c-1 ars
o B Foveroi].

i=1 (3.41)

If we consider the special case in which 8 T ees T a, 4 =0

and a, = a, where 0< a<1l, and let

B1,c T H2,c T 0 T Meal,e

c-1 c-1
Ue = Ly o NﬁZ"i ’
i= i=1 (3.42)
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then (3.24) can be written in the form:

- - a . ﬁc-r-l
9, (T 5u.) = K(Nc-r)auc,o J'F (1-F) aF +
2=0

- - 1 ﬁc ﬁc—ﬁc-l u, n,-u,
k(N T ) J'F (1-F) G S(1G) aF +

zZ=a
1 ﬁ ﬁ -ﬁ u n -u_ -1
K(n -u ) jp°(1-p) © %66 % ¢ «+
(] (o4
=8
l+a
- c ny~u,-1
K(ng-u) 5.7 o jc (1G) &
c C - .
z=1
(3.43)

Now following a procedure analogous to that used in the general

case in which we substitute for F, expand and integrate, we

get:
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- I
© Ve[ N, =T\ T+l _ -1
9 (Uc,u ) = c’o Z (-1) v a [Nc-r-vl][rwl+l]
v1=0

U N-U u
¢c ¢ ¢ c V-V N -0
1 1
K Z Z("l) ql <c 5( )

q1=0 v,=0 vz'O

U Hu g, v+l 1
(l-a) (u | 1ay ] [(N -U -vl)/ (1-a) +

nc uc
(n—u-z)]+K6NEOZ(l) [n—uv

uc+vl+l

[1 -(1-a) Jlu +v 1] . (3.44)

3.5.2 Change in Scale of the Rectangular Population.
The alternative hypothesis is

( Fi(x)=x/ei, 0<xg<e ,

0 y x<0 ’

o
1}

oo, x> ’ (3.45)
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where the scale parameters are ordered as follows:

0 < el < 92 < LN ] < ec .

The joint distribution of the Ui's is obtained by substi-

tuting (3.45) in the expression for h(ul, ceey Uy 2) glven by
(3.4) and integrating over the range of 2z. The actual range in

this case is 0< z < Bc, since all of the Fi's are zero for

2 <0 and one for z > ec. Thus we obtain:

Pr{ U =y |1=1,2, eee, c} = ¢e(ul, ey u)

]!

c ]
(o] (o] Ui ni"ui _1
Z(nj—uj)}( j‘{ n [Fi (1-F,) ]} (7)™ ary

i=1
=] =0
s i (3.46)

The range of integration on 2z can be broken into ¢ pieces. This

will yield c¢ integrals, and (3.46) can be written as:

Pglugs «ees u ) = Q( ZR (W (3.47)

where

c

8,
Uy 1’“1]} -1
jZ (n-u,)K Io{i 1[ (1-F,) [1-7,)7" oF,
(3'48)
c 9t+l o ni'ui .
R, (u) =Z -uj,xj' {n [ (1-F,) J}[l-Fj] aFy

=1 (3.49)
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If we let
€&, = ej/ei s (3.50)

then (3.48) can be simplified if we substitute

Fy=¢ Fp, for 0<z<8 , 1l<ig<ec, (3.51)

in (3.48), expand the binomials and integrate. This yields

¢
n, -u. n_-u
171 c ¢ v
if ¢ /n,-u u, +v
- i=1 R | 174,
Qc(u) =K Z oo Z(-l) [I_T<v &,1 :]
- - i=1\ i
vl-O vc—O

(o] \
!

g c

N -1
{ Z [(nj'uj'vj)ej,l]} [r+ z vi+1]

J=1 i=1 (3.52)

Following a similar development, (3.49) can be simplified, if we
note that (3.49) will be zero unless (ni-ui) =0,1<1<t since
P, =1; 1=1,2, eeey t. Thus for 1 < t < e, (3.49) reduces to

i

e

t+1 ‘
c uy ni—uﬂ} :
F,7(1-F . —
R, (w) = Z(n (—1 1-ui’f>f {izgﬂ[i( )

J=t+l 8,

-1
(1-F, )7 aFy (3.53)




Again we can substitute

F F et <z<89

17 4,040 04 tlgice,  (3.5)

t+4l ?

into (3.53), expand and integrate to yield:

n, ,,-u n_-u c
t+l "t+l ¢ ¢ v
t R | (] - v
R =x(nms ) Y .. Yo iuig‘;i“ﬂ.
i=1 71 “i? =0 =0 i=t+] vy ’
Vi+l Ve
c
c S (u,+v, )+1 ¢
171 -1
i=t+l
{ Z[(nj_uj‘vj)ej,t+1]}l:l-¢t+l,t J Z(“i’“’i)*lJ ,
J=t4l i=t+l
(3.55)
where Ft+1(et) T €41t
If we consider the special case in which
91 = 92 T eee = ec_l =1 and ec =8>1, (3.56)




59

then (3.47) reduces to

N-U n-u
- L § G )[n - u v
Blu)=x ¥ Tt 2(‘,1 /(jz °)(1/e) © 2.

vl= v2=0

[ (ﬁcjc-vl) +( nc‘uc"vz)/e] [1‘+V1+V2+l] -1

v, {n =u u v+l
0 Z(-x)l A (R Rt
[ug vy #1] -1, (3.58)

using techniques similar to those used in the general case.

Again these results can be used to compute the power of the

test by first defining qd by

Pr{T>¢t |H }<x,

then the power is computed from Pr [T > ty | Hy } =

ﬁi ¢.a(ul’ ceesy uc) Such that T >- td .
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3.6 Results.

The exact power of the T statistic has been computed for
the case of three samples using various exponential alternatives.
These results are presented in Table 3.1 for total sample sizes of
11 and 15. Since the computations were performed in single preci-
sion arithmetic, the values computed for the sample of size 15 may
have errors as large as + 2 in the third decimal place as indicated
by the cumulative sum.

The power of the test, in general, increases with a positive
shift in the locations, especially when the test is unbiased. How-
ever, several cases can be noted in which this trend fails to occur
indicating that in these cases the test is biased. (For cxample, see
Table 3.1 for n =11, n, =5, n, =4, and « = 0.0476.) This ef-
fect seems to occur frequently when « is very small. An analysis
of the complete distribution of the T statistic indicates that the
actual distribution becomes highly "peaked" in addition tu shifting
in the positive direction when the location parameters increase.

This means that the actual tail area for small «'s can decrease

even though the distribution is shifting in the positive direction.

3.7 Further Extensions.

The computational results presented in Table 3.1 can be ex-

tended to larger sample sizes and to other combinations of nyy By

and n,. The accuracy of the results can also be improved by per-

3
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forming all of the computations in double precision arithmetic.
Similar tables can be computed with rectangular alternatives. The
results can also be extended to more than three samples when more
efficient computational equipment is available.

Similar expressions for the power of the test can be de-
rived for a set of exponential alternatives with a change in scale.

Also, extensions similar to those indicated in Chapter I may be ap-

plied to this test.
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CHAPTER IV

EXACT POWER OF SOME TESTS BASED ON A GENERALIZATION OF
MASSEY'S STATISTIC

4.1 Introduction.

The exact power of some tests based on Massey's statistic
for the case of two samples has been investigated by Chakravarti,
Leone, and Alanen [13]. The purpose of the investigation in this
chapter is to extend their results to the case of discriminating

between ¢ populations on the basis of ¢ ordered samples.

4.2 The ¢ Sample Problem.

Let {xl(i), xz(i), coes X_ )} for1=1,2, een, ¢ be c
i
sets of independently distributed random variables with continuous

cumulative distribution functions Fi’ respectively. We wish to

test the hypothesis

against the alternative

H Fl(x) > F2(x) D eee D Fc(x)

c
Let ny denote the size of the ith sample, and n = Z n
i=1

the size of the combined sample. For simplicity, we will assume that

n =4r +1, where r 1s an integer. Also let Zl and Z2 denote

respectively the first quartile and median of the combined sample.

Let U end U denote respectively the number of cbservations

1,i 2,1

in the i'h sample less than Z1 and the number of observations
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in the ith sample that are greater than or equal to Z1 but less
than Zz, i=1,2, ..., ¢. The results for the combined sample
can be arranged ina 3 by ¢ contingency table showing Uti’ the

th th

number of values from the 1 sample in the t interval
(1 =1, 2, eeey €3 t =1, 2, 3). This table will have the follow-
ing form:

Number ¥ observations less than the first quartile

and uetween the first quartile and the median.

Intervals ISt Sample an Sample | ... cth Sample Total
1. x < Z1 ul,l U 5 voe Uy e Sl =r
2. Zl <x< Zz U1 Uy o voe 1.12,c 52 =r
3. x> Z2 uj g U3 o soe U3 o SB=2r +1
Total ny n, eee n, n
where
u3,i = n, - ul,i - u2,i sy 1=21,2, viay ¢,

To test the null hypothesis

H Fl(x) = Fz(x) = ... = Fc(x) ,

the usual chi-square statistic, T, based cn the set { uy g } may
b

be used. We reject Ho for large values of T, where the statistic

T 1is defined as follows:
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c 3
Z Z{[uti nist/“uz/ (ns,/m)} (4.1)

i=1 t=1

The test rule based on the statistic T is:

reject Ho ir T> ?d ’
accept Ho if T < 9« s

where t  is chosen so that Pr{ T 2t | H, } o, and < 1is the

preassigned level of significance.

4.3 The Null Distribution.
Let Pij({Ut,f ', 142y =2,2, = z,) denote the joint

u
probability density of { }, Z, and 2

the ith sample, and 2

20 when Zl belongs to

2 belongs to the jth sample, 1,J=1, ...y

Then the expression for Pi 3 is given by:
s

b= w0 \F ()] IO (2)oF (0)] 2P >1u3’“‘}-
1, m=l{ul,m’u2,m m -1l m'%/~p'\%1 ) m'%/

dF, (z,) dF,(z,)
“2,1“3,J[F1(z2)‘F1(21)]-1[1°Fj<22”-1 cilzll ;zz

2 .

(4.42)

Hence, the joint density of the Ui j’s, Z1 and Z2 is given by
’

c c

h(ui)J’ zl’ 22) = 1:2_1 Jfl Pi,j (4.3)
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The null distribution ¢°(u of the U ,'s, (1, =1, 2, eeuy ),
’

1,5 ]
under the null hypothesis is derived from h(ui j,zl,zz) by substi-
b
tuting
Fi(2) = F,(z) = ... = F (2) = F(z)
in (4.3) and integrating the resulting expression over the range of

2, and z,. This yields

1 2
LACTIE I f huy ,29,2,) dz) da,
—°<zl<zz<°
1 F(z,) r-1 2r

= ke(zrr)[ [ (R (F(z)-Fa)] (1-Fla)] eF(ay)aF ()
0

(4.4)

where
c l’lm
K= 1
r=1\"1,m* Y2,m/ .

Letting Q = F(zl)/F(zz) in the innermost integral, (4.4) can be

integrated. This yields:

cpo(ui J.) = Kr(2r+l) B(r+l, r) B(2r+l, 2r+l) , (4.5)
’

-1
where B(i,j) = [(i+j-1)t] [i-1)1(j-1)1) .

This expression can be rewritten in the following form:

o (u ) 4T n A |
o 30 pm \Y,m Yon <£’ f) . (4.6)
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For the special case in which ¢ = 2, (4.6) reduces to

-1
r r 2r+l n
@ (4 150, ) = [z )
0'1,1’72,1 ul,l 62,1>\nl Uy q Uy ik B
which agrees with the result obtained by Chakravarti, Leone, and

Alanen [13]. It should be noted that the statistic T defined by ~
(4.1) under the null hypothesis;is distributed approximately. as

chi-squ;re with 2(c-1) degrees of freedom. However, the exact dis-

tribution may be calculated from (4.6) and (4.1).

4.4 Power Function of T Test Agairst the Alternative of Translation
in the Exponential Pooulation.

The alternative hypothesis considered here is the same as

that in Section (3.4), namely:

"(x-ai)
Fi(x) = 1l-e s XD 8 »

H = 0 y X< a; »

where 85412 8 (L =1, 2, veey e-1}, 8, > 0. (4.8)

Let wa(ui,j) denote the probability Prf Ut,i = Uy 5

t=1,2,3, 1 =1, 2, «uay c}, when the alternative hypothesis

Ha is true. Then va(ui,j) is given by:

Paluy ) = ff h(uy 4» 295 2p) dzy dz,
- ®<z <2< @ (4.9)
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where h(ui,j’ Zq zz) is given by (4.3) .

The integration takes place over the appropriate ranges of

2, and Zye These ranges can be reduced to a, < zy < z, and

ay < z, < ® , since all of the Fi's are zero for z < a) . Thus,

(4.9) can be written in the form:

- o G 2 ¢ Y1,m u2 m.éi m
q’a(ui,.i)zxz Z I f gli[Fm(zl)] ’ [Fm(zZ)-Fm(zl)] T
i=1 §=1 z,=a, zl=a1m_

[1-F ( u3’m-éj’m} ~ dF, (z.) dF,(z.)
-Fp(z5) ] Y2,1 Y3,5 1'% N%) 0 (4.10)

Now, we can write

j; jf i j:E: . f: [jli j:J R I:UB?U, s fzJ

et 8
and obtain
c
¢a(‘“‘li,j) = ZZ Qs,t * ZQs,s (4.11)
1 St<s<—c s=1
where
c ¢ a a
s+l b+l
%W,y 7K Z Z .[ f Py,j 9F;(z)) aFy(zy), 1<t <s<e,
i=1 j=1 2,7, 2{7a,

(4.12)
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¢ ¢ a, 3,
= K Z y ‘f J7oryyaray) ara), 188 <,
i=l j=1 z a, zl-as
and
) c ul,m u2’ —61,
F1,1 ',gli[Fm(zl)] [Fy(zp) - Fy(z))] s
3 m J:m
[l“ 2)] ’ } uZ,i uB,J ,
with a z e,

ctl
In Qs,t’ Fi(zl) =0 for t+l1 <i<c and Fj(zz) =0 for
stl {j <c¢. Hence, for t+l <1 <c and stl < j <e¢c, Qstwill
- - - - ’
be zero unless ul,i =0 and uz,'1 = 0. Thus, if we define

TPTSR PYPS 0, (4.12) and (4.13) reduce to

8

Yt Lﬁtb U n+1’°] [m =g U2 m+1’°] L L }

i=1 j=1 z,7a

a
i
2,"a

t

t “1,m 42,m 6m, “2,m .
0 {F,(z)) “7(F (z5)-F (2.)] Y m [Fy(zy) =7
m=1 m=t+l

8 u, =48
T {[1-F_(2,)] dom iy ly

o 5) 2,1%3, 3 dF, (z;) cll-‘J (z;)

(4.14)
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¢
Q iy 6 $
s,s m=s l m+l’° u2,m+l’O

: "1, “2,07%, 1 300,47 .
m__l{F (zl) m[Fm(zz)-Fm(zl)] non [l-Fm(zz)] non }

dFi(zl) dF

92,1 3,3 (2a) (4.15)

First, consider (4.14) and let

-(a,-a,)
Ty,e =@ v,

Yie SNy

Then, we can substitute

Fila) =1 =my (Q-Fula)) =y o + 0y 4 F(2))s 8 S 2y oy

2

Filag) =1 =My f(QoFy(ap)) = yy,q + My ¢Fylag)s oy Sz Capyy

’

(4.16)
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A in (4.14). This give us

S -
c c t u2 t
Q T8 ms T MV zu .
st L—t 1,m+1'°} [n—s 2,m+l’0J jgl{mzl T, }[1-1 2’1:]

a Y
s+l Tt,t+1 u u
1,m Lt ,
I J; {‘H [Ym t+nm tF (zl)] ’ }Ft(zl) ’

m=
22~5

t

. Eu2 -
[F, (z,)-F, (z) 1% { 1 F(z
t 92 91 m=t+1 m

.

“2,m}

2) U4

{ o [I-F )) 3,m m j} dF (Zl) dFj(Zz) (4.17)

m=1

u
Assuming that t > 1, we can expand [ym o T tFt(zl)] L eor
b b4

t
Zu -1

= »I
1<m<t, [Ft(zz)-Ft(zl)]m 1 , and perform the innermost

integration.




This ylelds

s Y11 Y,e-18

u
1
[ [+]
Yt K[mgtaul,mﬂ’oJ Lgsﬁuz,mu’oil Z Z Z z

71 q=0 g, ;=0 w=0

\
w2 A t-luy oty Y1, }
(-1) < w (A p ] m’j ,tm Ym,tm qmm) 3,5

t-1
a
t-1 a ul,t+é§lqm+w+l s+l Az’t—w-l
[“1,t+ Z G ¥y b .[ Fo(zp) ’
n=1 2,78,

where A = Zu, _. When s > t+l, we can substitute

i,j m=1 i,m

FJ(ZZ) = Yi,8 + nj,st(z2)’ for a, <z, < 8 41» 1<i<s ,
(4.19)

in (4.18), expand the binomials, and integrate. Thus, we get
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¢ c
Q =Kl I8 T cos
t 0 0
S tﬁt ul,m*l’ } [m=s u2,m+l’ ]q ZO Z =0 ‘;0

Bt U2, 041 Y2,s-1 A3 )
A ¢ )<A3;*> (=)

270 q4,4=0 qs-fo v=0

(A Ay t"*"qt][ { Elmzt n'n m”m-qm u;:)} } .

s-1 u u s-1 u
7 o (o) -

m=t+1

t-1l

O T s P ke £-1 -1
v,”? u +2q+w+l
t,s Ve, 1,0 Z %

(4.20)

<
7
- I\.)
[¢/] ~¢
+
’..u
l
o+
‘ =
N
-
“4
g w
™M
o (o
Q
+
<
+
-,
]
H
-
-l

Starting from (4.17) the results for the cases in which s = t+l
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and t =1 can be obtained in a similar fashion and are summarized
below:

Y,0 Y,ea1 Aot

(o] c
Q =K ms TS
t4,t [m=t “1,m+1’°} Ln=t,+l u?.,m+1’QJ Z Z Z

d)=p 4170 w0

2,t™ A3 14
’Z Z oy ey ()
w v ay 3,t+l

=0 v=0

A

h, oo 2 e ()|
2,t g n=1 ,t Ym,t q

t-1
U gty gt 2y e
m=1

3,m q t-1 -1
)
Ye,t+1 {mfl Tt

%
e
“t,t+1[“1,t+m:lqm**' 1]

“2,t+1+qt”"+l[u t
Ye41,t42 2,t+17 %

+v+l]_1

’
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2,1 %1% Uy o
2 m+l’ ]

I L Ll

c [+]
TR S |
w=0 q,=0 q,*0 q_ ;=0

3,3 \ \ u -
) ()" 2&/(% ) (’i;i )(uz,l-wl)(*‘a,s-v) '

N\ x\ v=0
- + - - -
snl Y3,m qm} snl 42,0 % Y2,m U,17"4 "1
m=1 T\m’s m=2 Yo, s I 1,8
s-1
uy l+w+l 1 u2,s+m§1qm+v+l s~1
1 ’ - ~
. 1,2 (uyg 1 #H7 vg on (uy ot flq ror1] ,
(4.22)

Us,1 Y2,17v 32

[fm %m on DA

’ ’
m=1 1m+1 m=2 2 m+1 -0 ql_o v=0

u A u, ,-w Hq
2,1}1{73,2]| 72,1 3 171 -1
( ”)< V>< % ) (g, 170700 (g )37 Tl ]

U1,112,179) Uy ooy vl -1
1,2 2 3 [uy o*ragvel]™ (4.23)
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If we substitute (4.19) for 21 and z., in (4.15) and ex-

2
pand, we get

Y11 Y1,s-1

¢
Q  =Klms 5 Yo
5,5 L:s ul,m+l’0 u2,m+l’0J = Z

ql-o qs_l=0
{lgﬁ} u2’m+u3,m+qm Yul,m-qm ul,m . \ )
m=1 nm!S m,s 9 2,s "3,s
a z s-1
sfl 2 ul,s+m§ q N 3-1
j f F_ zl) B 'FS(Z2)-FS(21)1 <y .
2,78 2978
AB S-l
(1-7 ’ F (2.) aF !
{(1-F (z,)] iF {2) dF (z)) L2
-/ S —l

New, if we let L =F 'z, F_ ‘z2.}] in tre innermcst irt:agral

and irntegrate, we skttnis
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Y11 Yy,s-1

c =
Q, . =K|Ts 8
8,8 Lps U1,m120 “2,m+1’°J . Z L :

l:O qs_l=0

%&; u2,m+u3,m+qm Yul,m—qm ul,m A A .
=1 1‘m,s m,s ., 2,8 3,8

a s-1

+ ) ( . -
B u1,s L;qm+l’A2,s f Fs‘ZZ)
6=l z,=a
2 s

A3 s
[1-Fs(22)] ’ dFs(z2)

(4.25)

A -1
The factor [l-Fs(zz)J 355 can be expanded and the re-

sulting expression integrated to yield
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. Y11 Uy,s-1
o
Q = K n 6 6 oo
8,8 LFS ul’m+l,0 uz’m+1,0] éo Z_—_-O
93 9.1

?ﬁ} u2,m+u3,m+qm ul,m-qm ul,m A .
n=1 T]m,s Ym,s 9, 2,8

s-1 Aj,s A
v{'3,s » .-
Bél’; qu+l’A2,s ): (-1) ( v)(AB,s v)
m=1 v=0
s-1
A2,s+ul,s+ Elqm+v+l o1 4
VS, s+l [A2, S+u1, 5;i%m+v+l] ’ (4.26)

or rewriting the Beta function in terms of factorials one obtains
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(o] ul’l ul,S-l
Q K Ha a0
518 [ U 08, +1’°J Zo Zzo
4 931

{séi["m m3,n" mlsm n C‘;;m>]} .

s-1\ 3,3
oo st oy o

v=0
s=-1
A, +u, +Zq +v+1 s-1
2, 1,s “im
Yg,st1 DL (A, %1, 2, st . (427
For the case in whizh s =1, (4.27) becomes
¢ 1
Q TS, 6 tu, L4[(u Wi .
I LR ] B BB AL i S U
u
3,1
u +u +v+l -1
vl 3,1 2 11,1
Y (1) ( ’><3 1 ") Y1,2 [y 1+uy fvHl],
V:
(4.28)
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Also in the case s = ¢, (4.20) and (4.27) can be simplified
since the outermost integral becomes a complete Beta function.

These results are summarized below.

. U1,0 Y, A28 Ao gV Ug i Yo a1
-— w L]
S TR I T il o
=t T LmHl g 2o =0 w=0 q,=0 q,,.=0 q_ .=0
1 QU 9 t+1 -1

(A2,t) Q“.?,t-w)(A e, ) tr-ll u2,m+qm Yul,m_qm Y1,m } .
w qt 2,t t =1 nm,t m,t q

m

3&1 . By Lo ] g&l “B,m} nqt Ay 492yl ‘
— Tlm,c Ym,c q =1 nm,c t,c Yt,c

m

t-1
ul , t+m'=£.lqm+-w..r+l t-1 - . c-1 |
] .
Yo, t41 [uy o+ Z Ll (2rH) Ut Z qm) :
m=1 m=t
c-1
-1
1 + +1)1
[(uy  tor+ Ry ) (4.29)
m=t




LY
¥

81
u A
; l,c-2 "2,c-1 2,c-1
i = o1)(% c—l_w)
' Qc,C-l- ks 1 c,O Z Z Z Z ( l) ( ' )( ;c-l / )
"0 qc_2=0 w=0 1
:I ( - ) c 2 uz,m+qm ul’m-qm ul,m .
2 e-1"""%1 n=1 nm,c-l Ym,c-l 9,
o-2
_ c-1 uy A Z.49,-q
i - c-1 2.c-1 l c-l =1'm c-l
- { T nm } Me-1,c ¥ c-1,¢ i "
| .
-2
[ l,c__l+qu+w+1J (2r+1)t (u _1)'. .
m=1
' ((u, +2r+q_ . +1)! ]-1
; 2,C e-1""° . (4.30)
u u
1,1 1l,c-1 .
Q. =K i: ’Z T2 et |
c,c . °e =1 TIm,c m,c qm/
470 9,40
‘ c-1 c-1
.’ ri(2r+1) '.( Z qm\) [(a JHart Z qm+l) ]
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4.5 Results.

The exact power of the T statistic has been computed for
three samples using several sets of exponential alternatives. These
results are presented in Table 4.1 for total sample sizes of 9 and
13. Since the computations were performed in single precision
arithmetic, the error in the computations is rather severe, and at
times, amounts to + 1 in the second decimal place as indicated by
the cumulative sum.

As in the case of Mood's test, the power, in most cases, in-
creases with a positive shift in the location parameters, but, again,
several cases can be noted in which the increase does not occur.
This indicates that the test is biased under these circumstances.

As stated in Chapter III, this effect can be attributed to a sharp

"peaking" in the shape of the distribution of the T statistic.

4.6 Further Extensions.

Expressions similar to those developed in this chapter can
be derived for a change in scale and location of a rectangular dis-
tribution and a change in scale of an exponential distribution. The
results presented in Table 4.1 can be extended to larger samples and
other alternatives. The accuracy of the computations can be im-
proved by using double precision arithmetic. Also, some extensions

similar to those indicated in Chapter I can be applied to this test.
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TABLE 4.1

Exact Power of Massey's Test for Three Samples with

Exponential Alternatives: Pr{ T >t | H }.

“~

=0 =0 =0

s om om v «  =I% 2I% al%
53=.2 43=.5 33=.5

9 2 3 13.800 008 .016 <043 044
11.700 «024 .039 063 071

9.075 056 .091 .128 154

8.850 079 .119 «197 204

7.500 127 +159 237 .238

3 3 9.600 071 084 .110 .115
4 3 13.800 .008 .004* .002% .002*
11.700 024 .020% 010" .012%

9.075 .056 042% .022% .025%

8.850 079 LO70% .052% 070"

7.500 127 135 149 166

13 2 4 16.050 .002 004 .012 .008
11.718 007 .015 .053 046

11.099 .019 .030 072 063

9.728 054 .080 .150 139

8.932 073 102 205 .178

8.269 Jd12 .163 294 280

4 4 16.714 .001 .002 .009 .010
13.929 .006 .008 015 , 017

12.071 .013 .021 047 050

9.657 .055 .070 111 127

8.976 .078 104 176 .189

7.738 135 179 312 «306

7 4 16.050 002 .001* . 000" .000*
11.718 007 .004* .002#% .002%

11.099 .019 N ) VA L007* .008*

9.728 054 <048% .041% +043%

8.932 .073 LJ70% .061% .081

8.269 112 .100* 076% 097%

#These values indicate a bias in the test.
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CHAPTER V

ANALYSIS OF CATEGORICAL DATA

5.1 Introduction.
The usual method of testing a hypothesis concerning cate-
gorical data is to compute a statistic T, which is distributed
approximately as x?. Then the hypothesis is accepted or rejected
depending upon the relationship of the observed value of T to a
predetermined critical value obtained from the x? distribution.
Since T 1is only approximately distributed as x?, the exact dis-
tribution of T under several different null hypotheses has been
computed for both one-way and two-way classifications, and these re-~
sults have been compared with those obtained from the x2 approxi-
mation, in order to determine when the approximation is valid. Also,
the exact power of the T test has been computed for a one-way
classification with fixed alternatives, and these results compare

favorably with those obtaired from a non-central x2 approximation.

Extensive tables of the non-central chi-square distribution

given by

-X A ;
2 > ) XV/2+J—1 .

e AY
F(X"v‘:y} = JJ =
o 2v/2 §:

+j j.
j2o (/27235

dx

where A denotes the non-centrality parameter and v the degrees

of freedom, have been computed at Case Institute of Technology [8 ].
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The computational algorithm suggested by Professor N.L. Johnson [10]

reduces the integral to a double Poisson sum:

-
FAvey) = ) Zs2i+v <%) 3 <%> ’

1=0 j=0

where

and

o
e
~~
el
S~
|

e
Y& gy o0 2.

5.2 One-way Classification. B

In this case the set of n observations is partitioned into
k cells { Ay | 1=1,2, ..., k } with n, observations in cell

Ai « We will consider the null hypothesis given by

k
H, 3 { m | 4 =1,2, ..., k} such that % m =1,

1=1 (5.1)
where m, Trepresents the probability that an observation will fall

in cell Ai' The usual statistic T is defined in this case by




%
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k
_ 2 -1 :
=) (- om)? ()T (5.2)
i=1
The observed frequencies, N, will be distributed as the multi-

nomial distribution

k -1 /k n;
¢°(n1, ceey nk) =(n){ T n, ! T

1=1 1=1 . (5.3)

Hence the exact distribution of T can be computed from

Pr{ T >t | H, } = Z: ¢°(n1, ceey nk), such that T > t.,
n (5.4)

i
where t is a fixed value of T. The results for the exact distri-
bution of T as a function of the sample size, n, are displayed
in figures (5.1) and (5.2) for two different null hypotheses. The
approximating chi-square distribution follows the exact distribution
very closely even for small values of n.

The exact power of the test with the significance level at
o, can be evaluated by considering an alternative hypothesis such

as:
k

= Hyt{p 14=1,2, cec, k}, where Zp, =1

i=1 . (505)

Then the power of the test against this alternative will be given by

pr{Tyt | H } =) @ln, .., ), such that Tt ,
ni (5‘6)

v \./
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where 9 is defined by

k -1 k n\
wa(nl, ceey nk) = (nl)(ég;ni€> (;E'pi :) s (5.7)

and qq is defined implicitly by

} < (5.8)

If we let X be a x? variable with k-1 degrees of free-
dom, then T will be approximately distributed as X [ 4]. -

Patnaik [19] has shown that the distribution of T under the alter-

native hypothesis can be approximated by the non-central x2 dis-

tribution. This fact when applied to (5.6) yields:

Pr{Tyx | l~] £6A) d6d) (5.9)
X
[= ¢

where o
2
£(x%) = o #X e'ﬂZ%"Z {(xz)ﬁwj‘llj[I'('bv"J)ZZJJ-‘.]-l} ,
§=0

is the non-central chi-square distribution with v degrees of

freedom and A 1is the non-centrality parameter. In our case

k
v=k -1, A=n Z:(pi - 1'ri)2(1'ri)"l
i=1

. (5.10)

This function has been extensively tabulated in [ 8 ]. Also, Patnaik

[19] has shown that the non-central x“ distribution can be approxi-
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mated by a central x2 distribution by equating the first two
moments of the distributions. This yields a further approximation

to (5.6), namely:

Pr{Tx }~ fm gly) dy , (5.11)
xd/p

where

gly) = e"“y (y)g"""1 2‘*“'[r(§v')]”1 , and

v = % 0, 0 = (v2) (v L, o' = (uin)Z(wrza)

.

Tables (5.1) and /5.2) compare these results of equations
(5.6), (5.9), and (5.11) for two different sets of hypotheses. The
approximations to the exact power given by (5.9) and (5.11) are close
to each other. They both overestimate the exact power of T for
n < 20 in example 1 presented in Table 5.1 and for n <15 in ex-
ample 2 presented in Table 5.1. However, for n = 20 in example 2,

they underestimate the exact power.

5.3 Two-way Classification.

In this case, the set of observations form a two-way con-

tingency table in which three different subcases can be distinguished,

namely:

(1) Neither set of marginal sums fixed.
(11) One set of marginal sums fixed.

(ii11) Bo'h sets of marginal sums fixed.
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In each of the subcases, the expression for the test statistic T is:

r

8
i} ) 2
T2 Jil(nij ng n y/0)/(n n y/n) (5.12)

where r denotes the number of rows, s the number of columns,

h

n the frequency in the ijth cell, n the marginal it row

A 1] i.
. sum, and n 3 the marginal jth column sum., Also, n denotes the
. grand total.
In order to obtain the null distribution of T, it will be

necessary to consider each of the subcases separately.

e b 5.3.1 Neither Sets of Marginal Sums Fixed. B
In this subcase, we will consider the following null hypo-
v thesis:

Ho : { pij = pi_p.J l i=1, eeey v 3 J =1, ceey s } ,
(5.13)

_ where pij is the probability that an observation will fall in the
- th

/‘/i, ij cell, p; are the marginal row probabilities, and p.j the
Jvi, marginal column probabilities. Then

: x; “ r s
- P T &P T 1 (5.14)

The observed cell frequencies, nij’ will be distributed under the

null hypothesis as:

CN ( r s -lrr s ( n, .
k. cpn.)=n'.[‘[T Trn.'.J [IT T(p. p ,) :]
; B o' i ij 1=1 j=1 i.74 ’ (5.15) '
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where wo(nij) will denote the probability of observing the
nij(i=1, 2, veey T3 §J=1,2, vsay 8) , and the null distribution

of T will be given by

Pr{T>t |H }=: ®,(ny;) » such that T >t
13 (5.16)

The results for the cases a) r=2, s =3 and b)r=3, s=3
are summarized in figures (5.5) and (5.4). Since T 4is asymptoti-
cally distributed as iie central x2 distribution with (r - 1)(s -1)
degrees of freedom, this curve is elso plotted on the graphs for
comparison purposes. It should be noted that the exact distribution
of T 1is fairly well approximated by the x? distribution for

relatively small sample sizes.

5.3.2 Only Row Marginal Sumg Fixed.

For this subcase the null hypothesis becomes

Hy { Py =Py | 3=2,2, veay s}, with (5.17)
] L]

Zp = 1, Sn = n (fixed) . (5.18)
j=1 o =1 1} i.

The distribution of the observed cell frequencies, nij’ under the

rnull hypothesis is:

¢O\nij) - 1I=Il [njﬂ'(jglnij.) \JI—}-lp‘J >J ’ (5-19)
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and the null distribution of T will again be given by (5.16).
Also T is asymptotically distributed as x2 with (r-1)(s-1)degrees
of freedom. These results are displayed for several different sets

of marginal sums, in fignres (5.5) and (5.6).

5.3.3 Both Sets of Marginal Sums Fixed.

It has been shown by Mood [16] that the distribution of the
cell frequencies, nij’ does not depend upon the cell probabilities,
namely, pij’ but is dependent only on the fixed marginal sums.

The distribution of the cell frequencies is given by the hyper-

geometric distribution:

r s r s -1
Pryy | myomy fixed) = [1T=rln1-'°J (jgln‘j "] [n"<1§1 :Elnij')] ’
(5.20)

where

s
- Ka) ( =
1? n g 2y (fixed) , § ny g n, (fixed) . (5.21)
i=1 J=1

The exact distribution of T 1is given by (5.16), ard T is
asymptotically distributed as x? with (r-1)(s-1) degrees of
freedom. Typical results are given in figures (5.7) and (5.8) for

several different sets of marginal sums.

5.4 Furthei Extensions.
The exact power of the T test for the case of a two-way

classification has yet to be investigated. Also, both the null




92

distribution and power calculations can be done for other classifi-
cations such as a three-way table. However, present rcomputing
equipment is inadequate for extending most of the above results,
since even a 3 x 3 contingency table with neither margins fixed
requires a considerable amount of computing time on an IBM 7090.
“he actual number of combinations that were investigated for a
sample size of 15 was 490,314, and this number increases rapidly

with n.
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Figure 5.1 Exact null distribution for a one-way classification.
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